
Page 1 of 35 
 

Developing a Bayesian network model for understanding river 

catchment resilience under future change scenarios 

Kerr J. Adams1, 2, Christopher (Kit) A. J. Macleod2, Marc J. Metzger1, Nicola Melville3, Rachel C. Helliwell2, 

Jim Pritchard3, Miriam Glendell2 

1University of Edinburgh, School of Geoscience, Edinburgh, Scotland,  

2The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland,  

3Scottish Environment Protection Agency, Strathallan House, Stirling, Scotland 

Correspondence to: Kerr J. Adams (kerr.adams@ed.ac.uk) 

Abstract  

The resilience of river catchments and the vital socio-ecological services they provide are threatened 

by the cumulative impacts of future climatic, land use and socio-economic change. Stakeholders who 

manage freshwaters require tools for increasing their understanding of catchment system resilience 

when making strategic decisions. However, unravelling causes, effects and interactions in complex 
catchment systems is challenging, typically leading to different system components being considered 

in isolation.  

In this research, we tested a five-stage participatory method for developing a BN model to simulate the 

resilience of the Eden catchment in eastern Scotland to future pressures in a single trans-disciplinary 
holistic framework. The five-stage participatory method involved co-developing a BN model structure 

by conceptually mapping the catchment system and identifying plausible climatic and socio-economic 

future scenarios to measure catchment system resilience. Causal relationships between drivers of future 
change and catchment system nodes were mapped to create the BN model structure. Appropriate 

baseline data to define and parameterise nodes that represent the catchment system were identified with 

stakeholders.   

The BN model measured the impact of diverse future change scenarios to a 2050 time-horizon. We 

applied continuous nodes within the hybrid equation-based BN model to measure the uncertain impacts 
of both climatic and socio-economic change. The BN model enabled interactions between future change 

factors and implications for the state of five capitals (natural, social, manufactured, financial and 

intellectual) in the system to be considered providing stakeholders with a holistic catchment scale 
approach to measure the resilience of multiple capitals and their associated resources. We created a 

credible, salient and legitimate BN model tool for understanding the cumulative impacts of both 

climatic and socio-economic factors on catchment resilience based on stakeholder evaluation. BN 

model outputs facilitated stakeholder recognition of future risks to their primary sector of interest, 
alongside their interaction with other sectors and the wider system. Participatory modelling methods 

improved the structure of the BN through collaborative learning with stakeholders, while providing 

stakeholders with a strategic systems-thinking approach for considering river basin catchment 

resilience. 
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1. Introduction  1 

Freshwaters are essential for human life through the provision of drinking water and food production, 2 

regulation of climate and benefits to culture and well-being. Due to the multiple ecosystem services 3 

provided, freshwaters have become an exploited common resource and human activity threatens their 4 

ability to provide these vital services (Dodds et al., 2013, Heathwaite, 2010, Vörösmarty et al., 2010). 5 

Driven by both population and economic growth, the availability, quality and biodiversity of 6 

freshwaters are in decline, with projected changes in climate, land-use, population demographics and 7 

societal behaviour expected to accelerate negative trends (Boretti and Rosa, 2019, United Nations, 8 

2015, Wada et al., 2016). With the pressures freshwaters face, stakeholders including governments, 9 

environmental protection agencies and businesses must work together to ensure that freshwater 10 

resources are resilient to the impacts of environmental change and can continue to provide ecosystem 11 

services both now and in the future.  12 

At a catchment scale, stakeholders often have competing demands on access to high-quality water for 13 

activities such as food production and drinking water supply, leading to complex interactions in socio-14 

ecological systems. Different water uses within a catchment can lead to compounding negative impacts 15 

on freshwater resources (Pahl-Wostl, 2007). For example, in agriculture, the application of fertilisers to 16 

grow food is a source of diffuse pollution, while discharge from wastewater treatment systems leads to 17 

point source pollution (Crossman et al., 2013). Water is shared between competing stakeholders and, 18 

aquatic ecosystems that also rely on clean water (Falkenmark, 2003). Hence, to ensure resilient water 19 

resources, an understanding of the complexity of socio-ecological systems is required (Pahl-Wostl et 20 

al., 2011, Plummer and Baird, 2021). 21 

Consideration of potential future change scenarios adds further complexity when considering the 22 

resilience of freshwater resources. Focussed on managing complexity and changes which pose 23 

challenges for socio-ecological systems, resilience is understood as the ability to cope with diverse 24 

shocks and stressors due to climatic and socio-economic change (Rodina, 2019). The extent of future 25 

impacts on water systems is uncertain due to uncertainties in the scale of climatic and socio-economic 26 

factors, including population and land-use change (Holman et al., 2016). Harrison et al. (2016) 27 

highlighted that climate impact assessments that did not consider the complexities of socio-economic 28 

drivers and cross-sectoral interactions could lead to over-or under- underestimations of future impacts, 29 

highlighting the need for stakeholder participation in the consideration of future change impacts.  30 

Participatory modelling approaches improve understanding of socio-ecological systems and 31 

environmental problems (Gray et al., 2018). Stakeholder engagement is a key element of participatory 32 

modelling, where the involvement of diverse stakeholder groups provides valuable conceptual 33 

knowledge of system components and their relationships (Hare, 2011). Stakeholders as components of 34 
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socio-ecological systems was recognised by Walker et al. (2002), who proposed that stakeholders 35 

should lead the development of conceptual system modelling as a first step in analysing resilience.  36 

In a review of participatory modelling methods, Voinov and Bousquet (2010) presented Bayesian 37 

Networks (BNs) as a participatory modelling approach. Bayesian Networks are probabilistic graphical 38 

models that represent the causal probabilistic relationships between a set of random variables (Horný, 39 

2014). A BN consists of two key components; a directed acyclic graph which represents the 40 

relationships between nodes in a system and conditional probabilities which quantify the probability 41 

distributions of nodes (Kaikkonen et al., 2021). Nodes and their relationships within a system are easily 42 

visualised, allowing the network structure to be assessed, modified and discussed by experts and 43 

stakeholders who know the system being represented by the BN (Aguilera et al., 2011).  44 

BNs can be used as a resilience analysis tool due to the ability to enable the participation of stakeholders 45 

in the development of conceptual system modelling and their application to explore future pathways by 46 

analysing “what if?” scenarios (Phan et al., 2019;Moe et al., 2019). The ability of BNs to handle 47 

uncertainty and complexity had made them a widely used approach in the field of water resource 48 

management (Phan et al., 2016;Castelletti and Soncini-Sessa, 2007). Moe et al. (2021) suggested BNs 49 

can improve environmental risk assessment, which is demonstrated by (Wade et al., 2021) who applied 50 

a BN model to measure the risks of multiple stressors on water quality and quantity.  51 

Common applications of BN models use discrete variables (Aguilera et al., 2011) involving the division 52 

of continuous variables into many distinct states (Mayfield et al., 2020). Discrete BN models face the 53 

limitations of discretisation, including a reduction of statistical accuracy and loss of information (Chen 54 

and Pollino, 2012;Xue et al., 2017). Hybrid BNs include both discrete and continuous variables to 55 

overcome discretisation limitations and make best use of available environmental data (Aguilera et al., 56 

2013), however, their application in environmental risk assessment is scarce (Moe et al., 2021). 57 

Knowledge gaps related to the application of BN models highlighted by Moe et al. (2021) include 58 

consideration of cumulative stressors in risk assessment models (Landis, 2021) and the integration of 59 

ecological and socioeconomic aspects. 60 

Addressing the knowledge gaps described, we tested the ability of a BN model to enable stakeholders 61 

to engage with complexity and uncertainty associated with 1) holistic understanding of complex 62 

catchment systems and the relationships between natural and social factors and 2) simulate the 63 

cumulative impacts of uncertain future climatic and socio-economic change in a single framework, 64 

using participatory BN methods.   65 
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2. Methods  66 

2.1. Study Area: Eden Catchment 67 

Our research focused on the River Eden catchment in eastern Scotland, in collaboration with the 68 

Scottish Environment Protection Agency (SEPA) – Scotland’s environmental regulator – and Scottish 69 

Water – a statutory corporation that provides water and sewerage services across Scotland. The River 70 

Eden catchment was identified as an appropriate case study due to deteriorating water quality trends 71 

which are attributed to the influence of both diffuse and point source pollution from multiple sectors 72 

within the catchment.  73 

The Eden catchment (320 km2) is situated in the Fife region in eastern Scotland (Fig. 1). The river Eden 74 

originates in the Ochil Hills to the east of the catchment, flowing through predominantly arable 75 

agricultural land (51%; (Morton et al., 2020) much of which is high-quality agricultural land on fertile 76 

soils (Environmental Change Network, 2021;Macgregor and Warren, 2016). The river Eden then flows 77 

east through the urban settlement of Cupar. A further eight tributary water bodies can be found in the 78 

catchment. 79 

SEPA continue to monitor the ecological status of water bodies in the catchment as part of the European 80 

Union (EU) Water Framework Directive (WFD) obligation to produce River Basin Management Plans 81 

(RBMPs).  Despite the UK’s exit from the EU, the WFD legislation remains in place in Scotland.  In 82 

2019, the upper stretch of River Eden was classified as being in poor ecological status and the lower 83 

stretch of the River Eden stretch was classified as being in moderate ecological status.  84 

Waterbody reactive phosphorus (RP) concentration is a key parameter that contributes to the poor and 85 

moderate classifications. A strategic study carried out by Scottish Water (2020) identified the Eden 86 

catchment as being heavily impacted by high concentrations of reactive phosphorus and at risk of further 87 

deteriorating water quality. The high reactive phosphorus concentrations are caused by wastewater 88 

discharges from Scottish Water wastewater treatment work assets (Fig.1.), diffuse pollution sources 89 

from agriculture, private septic tanks, and in-stream phosphorus release from sediments during low 90 

flows.  91 

Modelling and monitoring carried out in the water quality strategic study provide an understanding of 92 

the current ecological status of the catchment. The need for a complimentary future-focussed, systems-93 

thinking tool to address the water quality and water resource issues in the catchment was identified by 94 

SEPA and Scottish Water.  The tool would be required to support the trial of a new decision-making 95 

method called One Planet Choices, co-developed by SEPA and Scottish Water, in the Eden catchment. 96 
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The Eden catchment was selected due to the current complexity of both water quality and quantity 97 

issues, with the added complexity of multiple contributing sectors.  98 

The One Planet Choices pilot project aims to deliver a future-focussed systems-based approach to 99 

decision-making to help identify solutions that are resilient to future challenges. The method aims to 100 

take account of interdependencies between both natural and human systems to achieve good ecological 101 

status and also deliver wider benefits through the identification of both innovative and collaborative 102 

management solutions.  One Planet Choices takes account of a range of capitals, including natural, 103 

social, manufactured, financial and intellectual. Specific resources are considered for each capital. For 104 

example strength of community relationships for social capital; energy and chemical demands for 105 

manufactured capital; and monetary costs and benefits for financial capital.  106 

To inform innovative and collaborative management solutions, an understanding of the extent to which 107 

water quality and quantity issues will change in the future and the extent to which different sectors will 108 

contribute to catchment issues now and in the future is required. Our methods involved stakeholder 109 

participation in the mapping of the socio-ecological system and important relationships that currently 110 

contribute to the water quality issues in the catchment and plausible climatic and socio-economic future 111 

simulation pathways to measure future catchment system resilience.112 
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113 
Figure 1:  The River Eden Catchment, Fife, Scotland. Land cover data provided by Morton et al. (2020). Acknowledgements: Catchment 

boundary provided by National River Flow Archive. River network provided by the EU-Hydro River Network Database (Gallaun et al., 2019). 

Map created in ArcGIS Pro (Esri Inc, 2021). 
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2.2. BN Model Construction 114 

To construct a BN model to meet the needs of the One Planet Choices framework we developed a five-115 

stage participatory approach (adapted from Pollino and Henderson (2010)) (described in detail in 116 

sections 2.2.1 to 2.2.5 and shown in Fig. 2, Pane 1). Based on the ladder of participation outlined by 117 

Basco-Carrera et al. (2017) we identified two stakeholder groups to be involved in the research. As 118 

direct research users, One Planet Choices method developers from SEPA and Scottish Water, who 119 

participated in co-design and decision-making throughout the research, are referred to as the “project 120 

team”. The second group of stakeholders, with direct knowledge of the socio-ecological system in the 121 

Eden catchment, are referred to as “catchment stakeholders” who participated at various levels from 122 

discussion and consultation.  123 

2.2.1. Stage 1: Discuss model aim and objectives 124 

To understand knowledge needs and confirm the appropriateness of a BN model approach, we held six 125 

initial engagement meetings with the project team (Fig. 2. Pane 2A). Stakeholder needs were defined 126 

within the model aim: to measure the resilience of the catchment system to the impact of future shocks 127 

and changes and their influence on key capital resources.  128 

Objectives identified to achieve the model aim included: 1) ensure systems-thinking by mapping the 129 

socio-ecological interactions in the catchment; 2) measure the impacts of continuing current practices 130 

and trends into the future, called the future business as usual (BAU), shocks of extreme events and 131 

diverse pathways for future climatic and socioeconomic change to a 2050 time-horizon; 3) use a holistic 132 

capitals approach to measure the current and future health of the catchment; 4) identify specific aspects 133 

of the catchment system that are least resilient to the impacts of future change. 134 

Further discussions involved setting model boundaries (Jakeman et al., 2006). A previous rapid 135 

assessment by Scottish Water and SEPA using the One Planet Choices method and water quality source 136 

apportionment modelling in GIS identified the need to focus the work on the following five waterbody 137 

sub-catchments: Lower Eden (6200), Upper Eden (6201), Ceres Burn (6202), Foodieash Burn (6205) 138 

and Fernie Burn (6206) (see S1 Fig.S1.) of the supplementary material for a visual representation). Each 139 

waterbody sub-catchment is either not meeting good ecological status currently, or is at risk of not 140 

achieving good status in the future.  141 

Reactive phosphorus was identified as the specific parameter to reflect water quality. Wastewater, land 142 

management and water resource systems were identified as critical for influencing reactive phosphorus 143 

concentrations in the catchment based on previous scoping and dependency mapping exercises during 144 

the mentioned rapid assessment. Catchment stakeholders with a knowledge of each of the three critical 145 

systems (wastewater, water resource and land management) within both SEPA and Scottish Water were 146 

selected to participate in model co-construction.   147 
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To give an overall measure of the resilience of the catchment system, the project team required the 148 

model to take a holistic approach to investigate current and future impacts on five key capitals and their 149 

associated capital resources. Capitals identified by the project team included; natural capital and 150 

resources related to the quality and quantity of air, water and land. Social capital relates to the 151 

relationships and impacts on local communities. Manufactured capital, specifically the conditions of 152 

assets and changes in the use of energy and chemicals. Financial capital regarding changes in costs and 153 

incomes associated with resource use, asset conditions and changes in environmental conditions. 154 

Intellectual capital focuses on the potential changes in the reputation of sectors within the catchment. 155 

Model boundary headings were agreed with the project team to ensure the purpose of the BN model 156 

was achieved when building the model with different stakeholder groups, including:  157 

1. Future change   158 

2. Influence on the catchment system 159 

3. Consequence of change  160 

4. Capital resource  161 

5. Capital outputs 162 
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  163 

2.2.2. Stage 2: Construct conceptual catchment system model   164 

We conducted a series of focus groups (Fig.2. Pane 2B) to construct the BN model with stakeholders 165 

who had knowledge of the three critical systems: wastewater, water resource and land management. A 166 

total of 12 stakeholders participated in the focus groups, who were each given a specific identifier code 167 

based on their knowledge of the catchment system. Codes and critical system associations for all 168 

participants can be found in S2 Table S1, of the supplementary material.  169 

A five-step process (Fig.2. Pane 3) was used to construct the BN model with the focus groups. The aims 170 

of both the model building and model boundaries were explained to participating stakeholders as a first 171 

step. The second step identified appropriate nodes under each boundary heading using GeNIe modeller 172 

(version 2.4.4601.0) (BayesFusion, 2017). Political, economic, social, technological, environmental 173 

and legal headings taken from the PESTEL analysis framework (Yüksel, 2012) provided a basis for 174 

supporting node selection under the ‘future change’ heading. The ‘influence on the catchment system’ 175 

heading was used to support stakeholders in the identification of important nodes that define the system 176 

and the potential ‘consequences of change’ that could occur due to the influence of future impacts. 177 

Identification of ‘capital resources’ within the catchment was determined by the pre-defined five key 178 

capitals - natural, social, manufactured, financial and intellectual - and the important system-specific 179 

nodes identified by stakeholders. The key ‘capitals’ were used to summarise the outputs of the model. 180 

In the third step, stakeholders mapped the causal relationships between nodes identified under each 181 

heading, representing the direction of cause and effect relationships (Borsuk et al., 2004). In step four, 182 

a variable log was used to define each node and the metrics in which they should be measured. The 183 

variable log was also used in step five to record the data that stakeholders believed would be relevant 184 

for model parameterisation. Data for model parameterisation was collected in collaboration with both 185 

Figure 2:  Five-stage participatory approach used to create the Bayesian Network model (Pane 1). Stakeholder engagement activities involved in each 

stage of model construction (Pane2). Five-step process used during stakeholder focus groups (Pane 3). 
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stakeholders from the project team, and those who participated in the focus groups. During the 186 

collection of data, catchment-specific information, such as the specific wastewater treatment works and 187 

their locations, were also identified.  188 

A model description is presented in S3, Table S2 of the supplementary material, which describes all 189 

nodes included in the BN model, model equations, discretisation, data used for model parameterisation, 190 

justification for node inclusion and all decisions made during model construction and parameterisation. 191 

The supporting parameter values for each node in the model are also provided in S3, Table S3 of the 192 

supplementary material.  193 

2.2.3. Stage 3: Parameterise model 194 

We developed a hybrid BN model based on the modelling aim and the data available. Hybrid BN models 195 

include both discrete and continuous nodes, where the relationships between continuous nodes can be 196 

represented as equations (Marcot and Penman, 2019). Discrete nodes adopt a set of states which 197 

describe different conditions and continuous nodes adopt a finite number of values presented as 198 

statistical distributions (BayesFusion, 2017). 199 

Discrete choice nodes were used to represent and simulate different future pathway scenarios. The 200 

model incorporates Representative Concentration Pathways (RCPs) as the basis for measuring changes 201 

in climatic factors, using the UK Met Office (United Kingdom) Climate Projections 18, (Lowe et al., 202 

2018). The RCPs were coupled with Shared Socio-economic Pathways (SSPs) to simulate socio-203 

economic factors of change. We used the latest SSP narratives for the UK produced by Pedde et al. 204 

(2021) to frame the direction of change for the socio-economic factors such as population and land 205 

cover. We coupled three RCPs and SSPs for inclusion in the model as a deterministic choice node to 206 

allow for a range of simulations; RCP2.6 was coupled with the Green Road narrative, RCP6 was 207 

coupled with the Middle of the Road narrative and RCP8.5 was coupled with the Fossil Fuelled 208 

Development narrative. We defined the coupled simulations using the SSPs narrative names (Van 209 

Vuuren et al., 2014), except for the Middle of the Road narrative which was defined as the Business-210 

as-Usual (BAU) pathway, based on interpretations made by the stakeholder project team.  211 

Under the model boundary heading ‘future change’, precipitation change, land-cover change and 212 

population change nodes were identified by stakeholders. We used equation-based nodes to quantify 213 

the extent of future change and create a relationship with the discrete choice nodes that represent the 214 

three different pathway scenarios – Green Road, Middle of the Road and Fossil Fuelled Development - 215 

allowing model users to perform varying simulations of the BN model.  216 

Catchment-specific precipitation anomalies for probabilistic projections from the UK Climate 217 

Projections User Interface were used to quantify future precipitation change for each of the RCPs 218 

represented in the model (S4, Table S4). We used the mean annual precipitation rate anomaly to 219 

represent precipitation change for annual simulations. To represent shocks to the system, we used 220 
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extreme exceedance percentile values for seasonal summer (Q5 exceedance) and winter precipitation 221 

(Q95 exceedance) anomalies.  222 

Population projection data provided by an internal Scottish Water Growth Model to 2030 was used to 223 

quantify likely future population change. The data provided included both the raw and real population 224 

equivalents (PE) which represent the populations that are served by water assets in the catchment. Real 225 

PE projections are based on local authority strategic and local development plans. Raw PE projections 226 

use likely future population projections supplied by the National Registers of Scotland. Real PE 227 

projections are conservative in comparison to raw PE projections. The raw and real PE projections were 228 

extrapolated to 2050, using different considerations of how population growth might change to 2050 229 

based on the SSP narratives, and input from stakeholders with knowledge of conditions in the 230 

catchment. Projected PE change value to 2050 for the differing simulations in comparison to the average 231 

PE 2016-2019 at locations with the Eden catchment are provided in S4 (Table S5 and Fig.S2) of the 232 

supplementary material.  233 

Land cover change projections to 2050 were quantified using UKCEH land cover vector maps 1990, 234 

2007 and 2015-2019 (Morton et al., 2020) in ArcGIS Pro (version 2.58.0) (Esri Inc, 2021) to analyse 235 

current and historic land cover change in the catchment. We applied a story and simulation approach 236 

(Alcamo, 2006, Rounsevell et al., 2010) to change the percentage cover of each land cover type in each 237 

of the five waterbody sub-catchments. Percentage changes were based on the analysis of land cover 238 

trends from 1990 -2019, the different SSP narratives and the local knowledge of stakeholders to ensure 239 

the total possible land cover for the catchment could not be exceeded and the changes in land cover 240 

types were realistic. The percentage cover was then converted into hectares (Ha) for each land cover 241 

type in each of the waterbody sub-catchments. Projected land cover change values in comparison to 242 

2019 land cover for the entire catchment are provided in S4 Fig.S3 of the supplementary material, 243 

specific sub-catchment values can be found in S3, Table S2.  244 

A combination of monitoring data, processed-based model outputs and literature were used to represent 245 

baseline conditions of system states. ‘Future change’ nodes were linked to ‘catchment system’ nodes 246 

using equations. The impacts of future change on catchment system nodes were simulated as posterior 247 

distributions based on 10,000 Monte Carlo simulations, from which summary statistics (mean, standard 248 

deviation, minimum and maximum) could be derived.  249 

Continuous nodes were discretised into four states: resilient, low-risk, moderate- and high-risk based 250 

on the expert knowledge of stakeholders. A manual discretisation method (Beuzen et al., 2018) was 251 

used for nodes where state threshold values were defined by stakeholders and documented (e.g. asset 252 

and environmental licences). Where defined values were not available, we used a combination of 253 

manual and unsupervised equal interval discretisation methods (Aguilera et al., 2011;Beuzen et al., 254 

2018;Chen and Pollino, 2012). Manual methods set the resilient state threshold value based on current 255 
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conditions and an upper limit value as an unlikely value to exceed, in most cases an infinity value. The 256 

‘uniformize’ function in GeNIe allowed for equal widths for low, moderate and high-risk state threshold 257 

values. To prevent model outputs from being completely discrete, we presented dual representation of 258 

continuous nodes using a discretised child node.  259 

For all capital and many capital resource nodes identified, either no defined metric or supporting data 260 

were available. To measure the resilience of capital and capital resource values we designed a novel 261 

approach using nested IF statement equations whereby each discretised state in a parent node, from 262 

‘resilient’ to ‘high-risk’, was assigned a value of zero, one, two or three and the scores for each child 263 

node were summed. For example, if a parent node was within a resilient state threshold a value of zero 264 

was assigned. As multiple parent nodes were associated with capital and capital resource nodes, the 265 

sum of the ‘IF’ statement was used to determine their overall state. Discretising and indexing continuous 266 

nodes represent the probability of the states for capitals and their associated resource nodes, which can 267 

be compared across different future simulations. A detailed example of the IF statement indexing 268 

method is provided in appendix E.  269 

2.2.4. Stage 4: Evaluate model 270 

The BN model structure was validated using expert opinion (Marcot et al., 2006) during the engagement 271 

focus group sessions (Fig.2. Pane 2B) with stakeholders from SEPA and Scottish Water. We then 272 

presented the BN model to additional stakeholders during two workshops for validation (Fig.2. Pane 273 

2C,). These additional stakeholders were chosen to represent the views of other sectors and provide 274 

catchment-specific knowledge and expertise. A total of 11 stakeholders participated across the two 275 

workshops, seven of which did not participate in the focus groups (see S2 Table S1 for additional codes 276 

and associations). The first workshop included eight attendees and the second included seven attendees.  277 

Model performance was evaluated using a goodness of fit method (Aguilera et al., 2011) by comparing 278 

simulations of observed reactive phosphorus concentrations in micrograms per litre from catchment 279 

outlet, with simulated modelled reactive phosphorus concentrations in micrograms per litre under 280 

current conditions. The observed reactive phosphorus concentrations were taken from the Scottish 281 

Water strategic study carried out between November 2017 and December 2019 (Scottish Water, 2020), 282 

including bi-monthly sampling between 2017-2019, resulting in a total of 52 observations. We also 283 

used the credibility, salience and legitimacy evaluation criteria (Falconi and Palmer, 2017) to measure 284 

the success of the participatory approach at each stage of the BN model construction.  285 

2.2.5. Stage 5: Test model simulations  286 

We tested model simulations by presenting simulation outputs during the second workshop. After 287 

presenting model outputs during the series of workshops, the iterative cycle returns to the first stage of 288 

discussing the model aim and objectives. A seventh meeting (Pane 2A) was conducted by the project 289 
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team to provide a final evaluation of the BN model based on the aims and objectives set out at the 290 

beginning of the participatory approach.  291 

3. Results  292 

3.1. Model structure  293 

Focus groups (Fig.2 Pane 2B) and workshops (Fig.2 Pane 2C) provided opportunity for stakeholders 294 

from wider sectors to build and evaluate the graphical BN model structure. An initial conceptual model 295 

structure was presented as a system diagram of the key nodes included in the BN model (Fig.4), with 296 

arrows representing cause and effect relationships between nodes. Stakeholder feedback on the 297 

representativeness of the model structure of the Eden catchment is also presented in figure 4.   298 

Despite the majority of stakeholders describing the BN model structure as ‘mostly representative’ of 299 

the Eden catchment system, other participants were less convinced. To increase consensus, the wider 300 

group of stakeholders were taken through stages 1-4 of the participatory approach to discuss what the 301 

BN model should aim to achieve and how the model structure could be improved.  302 

Stakeholders highlighted that consideration of the food production system and its resilience to the 303 

impacts of future change was excluded from the model, as mentioned by LM6:  304 

“… ultimately we’ve also got to remember the positives of what land managers are doing for the rural 305 

countryside and what they bring and the benefits to the countryside and ultimately they are producing 306 

food for a nation…” – LM6.  307 

To improve representation, nodes such as crop cover, yields, fertiliser costs and farm margins were 308 

added to the model structure. The impacts of future climatic change, such as increased drought, and 309 

fertiliser price shocks - due to potential future shortages in rock phosphate - were established as factors 310 

that could impact the food production system in the catchment. 311 

“…phosphate fertiliser is going to be a decreasing resource because there are only 50-100 years of 312 

phosphorus rock reserve left in the world…” – EP1. 313 

The model structure was adapted and presented back to the wider stakeholder group during a second 314 

workshop. Updating the model structure was seen to improve model representation of the Eden 315 

catchment system and the influence of future change, as seen in the stakeholder feedback from the 316 

second workshop (Fig.3.). Participants highlighted that the model structure helped them to 317 

conceptualise the impacts future change might bring to their sector and the catchment.  318 

 “…it is a good way of understanding (the catchment system) and maybe farmers do need to think 319 

outside to box a bit more and think of the impact it (agriculture) is having…” – LM6  320 

“I think it’s also … a first chance that many of us on the call are really having our eyes open to what 321 

the next 30-year might look like in terms of political, social and climate changes.” – WW1. 322 
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3.2. Catchment resilience – Capital Outputs  323 

After improving the model structure, simulations were carried out to measure the impact of future 324 

change on the catchment system. Model outputs provided an overview of the conditions of the five key 325 

capitals represented within the catchment system. Capital outputs for four diverse simulations - 326 

‘Current’ annual conditions, ‘Business as Usual’ annual precipitation, ‘Green Road’ extreme low 327 

precipitation (ExLP), and ‘Fossil Fuelled Development’ extreme high precipitation (ExHP) - are 328 

presented (Fig.4).   329 

We found that under current conditions, all capitals were mainly within a low risk-state. Results can be 330 

interpreted as: for natural capital, 51% of the 10,000 BN model simulations were within a low-risk state, 331 

49% were within a moderate-risk state and 0% were within resilient or high-risk states.  332 

In the Business As Usual (BAU) pathway – which assumes annual precipitation change rates associated 333 

with RCP 6 and a continuation of current trends in population and land cover change to 2050 – risk to 334 

natural capital shifts from low to moderate-risk, 64% of simulations were within a moderate-risk state. 335 

Social, manufactured, financial and intellectual capitals remained predominantly within low-risk states, 336 

however, there was an increase in observations within moderate-risk compared to current conditions.    337 

In the Green Road extreme low precipitation (ExLP) pathway - which assumes the Q5 value for summer 338 

precipitation anomaly projections associated with RCP 2.6, lower population growth and a reduction in 339 

pasture land cover – we observed an increase towards resilience in all capitals. For intellectual capital, 340 

the majority of simulations were within a resilient state (75%). For natural and financial capital, there 341 

was a shift from moderate to low-risk, compared to current conditions. An increase in observations 342 

within a resilient state was evident for social and manufactured capitals compared to current conditions.  343 

In the Fossil Fuelled Development extreme high precipitation (ExHP) pathway – which assumed the 344 

95% exceedance value for winter precipitation anomaly projections associated with RCP 8.5, 345 

population growth increased urbanisation and a shift from natural to agricultural land cover –an increase 346 

in risk was observed for all capitals. The risk to natural capital shifted predominantly to moderate-risk 347 

(98%), with a small proportion of observations within a high-risk state (1%). Social, manufactured, 348 

financial and intellectual capitals all shifted from low to moderate-risk states compared to current 349 

conditions. 350 

351 
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352 

Figure 3: Conceptual Bayesian Network model structure and feedback on model representativeness of the Eden Catchment before (a) and 
the updated model structure (b) with stakeholder feedback from workshop 1 (c) and workshop 2 (d).  

 

b) Conceptual Bayesian Network structure, Workshop 2 

c) Stakeholder feedback, Workshop 1 d) Stakeholder feedback, Workshop 2 

a) Conceptual Bayesian Network structure, Workshop 1 
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353 

Figure 4: Conditional probability of resilient-high-risk states for each capital under diverse future pathway scenarios 
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3.3. Catchment resilience – Capital Resource Outputs  354 

The cause and effect structure of the BN model enabled the investigation of catchment resilience beyond 355 

the overview of capital states. Further investigation of catchment resilience is achieved using a manual 356 

sensitivity analysis to identify parent nodes with the greatest influence on overall capital states. Using 357 

the example of natural capital, Fig.5 presents a visualisation of the state of all natural capital resource 358 

nodes. Outputs are presented for the four diverse simulations of current and future conditions in the 359 

catchment.  360 

Under current conditions, surface water quality, surface water flows and air quality were all most likely 361 

to be within a low-risk state. Outputs highlighted that 85% of soil quality observations were within a 362 

moderate-risk. Groundwater quality is 100% resilient across all four simulations. 363 

In the Business as Usual simulation to 2050, the majority of observations for surface water quality, 364 

surface water flows and air quality remained within a low-risk state, however, there was a shift from 365 

low to moderate-risk states compared to current conditions. An increase in high-risk observations (23%) 366 

was evident for soil quality, which remained predominately within a moderate-risk state.  367 

An improvement towards resilience was evident for surface water quality, surface water flows and air 368 

quality nodes in the Green Road ExLP simulation to 2050. Soil quality remained mainly within a 369 

moderate-risk state, despite a shift from moderate to low-risk observations in comparison to current 370 

conditions.   371 

Increasing risk was evident in the Fossil Fuelled Development ExHP simulation for surface water 372 

quality, surface water flows, air quality and soil quality. Surface water quality, surface water flows and 373 

air quality shifted from predominantly low to moderate-risk in comparison to current conditions. High-374 

risk observations were evident in both surface water quality (12%) and surface water flows (13%). Soil 375 

quality conditions shifted to 89% of observations within a high-risk state376 

377 
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378 
Figure 5: Conditional probability of resilient-high-risk states for each capital resource under diverse future pathway scenarios 
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3.4. Sub-catchment system resilience   379 

Capital (Fig.4) and capital resource (Fig.5) outputs are representative of the entire catchment condition. 380 

Deeper investigation of catchment resilience was achieved through investigation at the sub-catchment 381 

scale. A visual representation of the state of water quality in the catchment, specifically for reactive 382 

phosphorus concentrations in micrograms per litre at the sub-catchment scale is presented in Fig 6.1 383 

and Fig 6.2. Mean reactive phosphorus concentrations can be derived from continuous model outputs 384 

and conditional state probabilities (%) for each discrete resilience/risk state for each of the diverse 385 

simulations.  386 

Simulating current conditions (Fig 6.1), reactive phosphorus (RP) concentrations were most likely to 387 

be in a low-risk state in waterbodies sub-catchments 6200 (mean RP: 238.4 (μg/l), 41% low-risk), 6201 388 

(mean RP: 218.3 (μg/l), 46% low-risk) and 6205 (mean RP: 122.2 (μg/l), 56% low-risk). Surface water 389 

quality in waterbody sub-catchments 6202 and 6206 were predominately within a resilient state.  390 

As the discretisation of surface water quality at the sub-catchment scale is determined by WFD high to 391 

poor ecological status thresholds for reactive phosphorus, discrete outputs can also be interpreted as 392 

follows: in waterbody sub-catchment 6200, the majority of the 10,000 simulations of reactive 393 

phosphorus concentrations (μg/l) were within a low-risk state (41%) or moderate WFD ecological status 394 

boundary (78-191 μg/l). Interestingly, the mean reactive phosphorus concentration value in waterbody 395 

sub-catchment 6200 (238.4 μg/l) value fell within moderate-risk or poor WFD ecological status states.  396 

In the future Business as Usual simulation (Fig 6.1), surface water quality deteriorated in waterbody 397 

sub-catchment 6200 which shifted from predominantly low to moderate-risk (42%) compared to current 398 

conditions, with an increase in mean reactive phosphorus concentrations to 257.7 μg/l. Despite staying 399 

mainly in a low-risk state, there was a shift towards moderate-risk in both waterbodies 6201 and 6205, 400 

which was also evident in increasing mean reactive phosphorus concentrations. In waterbodies 6202 401 

and 6206, resilience increased, which was again evident in the changes in mean reactive phosphorus 402 

concentrations. 403 

Increased risk was evident for waterbody sub-catchments 6200 and 6201 in the Green Road extreme 404 

low precipitation simulation (ExLP) to 2050 (Fig 6.2). There was equal likelihood of both low and 405 

moderate-risk (40%) in waterbody sub-catchment 6200. Using a precautionary approach - and with the 406 

mean reactive phosphorus concentration (243.3 μg/l) - we represent the waterbody at moderate-risk. 407 

Waterbody sub-catchment 6201 remained predominantly low-risk (44%), however, there was an 408 

increase in mean reactive phosphorus concentrations (230.9 μg/l) compared to current conditions. 409 

Improvement towards resilience was evident in waterbody sub-catchment 6205 compared to current 410 

conditions, despite reaming predominantly within a low-risk state. Waterbody sub-catchments 6202 411 

and 6206 remained in a resilient state.  412 

https://doi.org/10.5194/egusphere-2022-617
Preprint. Discussion started: 21 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Page 20 of 35 
 

In the Fossil Fuelled Development ExHP simulation (Fig 6.2), waterbody sub-catchments 6200 and 413 

6201 both shifted from low to mainly moderate-risk states compared to current conditions. Waterbody 414 

sub-catchment 6205 remained predominantly within a low-risk, while waterbody sub-catchments 6202 415 

and 6206 remained predominantly resilient. Increases in mean reactive phosphorus concentrations in 416 

all waterbodies demonstrated an increase in risk compared to current conditions.417 
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418 
Figure 6: Conditional probability of resilient-high risk states and reactive phosphorus concentrations in micrograms per litre in each waterbody 

sub-catchment under current (a), future business as usual (b), green road extreme low precipitation (c) and fossil fuelled development extreme 
high precipitation (d) simulations. Acknowledgements: Catchment boundary provided by National River Flow Archive. River network provided by 

the EU-Hydro River Network Database (Gallaun et al., 2019). Map created in ArcGIS Pro (Esri Inc, 2021). 
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Continuous outputs determined reactive phosphorus loads (kg/day) from different sources at each 419 

waterbody sub-catchment both now and in the future. Using the example of waterbody sub-catchment 420 

6200, mean reactive phosphorus loads for wastewater effluent and diffuse sources (arable, pasture, 421 

urban and septic tanks) currently and across the three diverse simulations were derived from the model 422 

(Fig.7).  423 

Currently, diffuse sources contributed the majority of reactive phosphorus (27.2 kg/day) in waterbody 424 

sub-catchment 6200, compared to wastewater effluent sources (23.9 kg/day). The total reactive 425 

phosphorus load was 51.1 kg/day.  426 

Source proportions changed under the future simulations, with a shift to wastewater effluent sources 427 

being the main contributor in the Business as Usual (BAU) scenario and the Fossil Fuelled Development 428 

(FFD) ExHP. Total mean reactive phosphorus loads increased in the Business as Usual (BAU) scenario 429 

(55.65 kg/d) and in the Fossil Fuelled Development (FFD) ExHP simulation (89.99 kg/day) compared 430 

to current conditions. In the Green Road (GR) ExLP simulation, a reduction in total mean reactive 431 

phosphorus loads (38.63 kg/day) was evident and diffuse sources remained the main source of reactive 432 

phosphorus (19.53 kg/day).   433 

The model structure and outputs enabled further specific investigation of reactive phosphorus sources. 434 

Using the example of wastewater effluent loads in waterbody sub-catchment 6200, Fig.8 presents mean 435 

reactive phosphorus loads (kg/day) at Cupar wastewater treatment works (WwTW) in sub-catchment 436 

6200 across the four diverse simulations 437 

Currently, Cupar wastewater treatment works contributed a mean reactive phosphorus load of 6.50 438 

kg/day. An increase in mean reactive phosphorus load was evident in the future Business as Usual 439 

Figure 7: Mean reactive phosphorus loads (kg/day) per source in waterbody sub-catchment 6200 under current and 

future simulations 
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(BAU) (10.07 kg/day) and Fossil Fuelled Development (FFD) ExLP (17.92 kg/day) simulations 440 

compared to current conditions. In the Green Road (GR) ExLP simulation, reactive phosphorus loads 441 

decreased (6.12 kg/day) compared to current conditions.  442 

 443 

              444 

3.5. Model evaluation – Goodness of fit  445 

We evaluated model performance by comparing the modelled current reactive phosphorus 446 

concentrations in micrograms per litre in waterbody sub-catchment 6200 with a simulation of the 447 

current observed reactive phosphorus concentrations in micrograms per litre in waterbody sub-448 

catchment 6200. Based on the mean reactive phosphorus concentration (Table 1), the model 449 

overestimated the mean reactive phosphorus concentration (238.4 μg/l) at the catchment outlet 450 

compared to the observed simulated reactive phosphorus concentration (181.1 μg/l). A greater standard 451 

deviation was observed in the model simulation (361.7 μg/l) compared to the observed simulation 452 

(109.3 μg/l).  453 

Based on the discrete output (Fig.9), the model underestimated the reactive phosphorus concentration 454 

compared to the observed simulation. The most probable state for reactive phosphorus concentrations 455 

in the observed simulation was within moderate-risk (44% probability) or poor WFD status. Despite 456 

the model overestimating the mean reactive phosphorus concentration, it did give an indication that 457 

reactive phosphorus concentrations in the catchment were at risk and not within a resilient state, or not 458 

meeting good ecological status.    459 

Figure 8: Cupar wastewater treatment works reactive phosphorus loads (kg/day) under current and future 

pathway scenarios.  
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Table 1: Summary statistics of observed and modelled current reactive phosphorus concentrations (ug/l) at the Eden 460 

catchment outlet waterbody sub-catchment 6200 461 

Observed Simulated reactive phosphorus (μg/l) 

6200 Outlet 

Model Simulated RP (μg/l) 

6200 Outlet 

Summary Statistics 

Mean (μg/l) 181.1 Mean (μg/l) 238.4 

Standard Deviation 109.3 Standard Deviation 361.7 

 462 

Figure 9: Comparison between posterior probabilities of observed and modelled reactive phosphorus 

concentration in micrograms per litre at Eden catchment outlet in waterbody sub-catchment 6200 
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4. Discussion  463 

4.1 Participatory process for BN model construction   464 

Düspohl (2012) highlighted the scarcity of literature evaluating participatory BN modelling processes. 465 

To address this gap, we evaluate the ability of our BN model to increase stakeholder understanding of 466 

catchment resilience to the cumulative impacts of future change using credibility, salience and 467 

legitimacy criteria set out by Falconi and Palmer (2017) throughout our discussion. The first stage of 468 

our participatory approach - discussing model aims and objectives - helped understand the knowledge 469 

gaps of the One Planet Choices project team, which was critical when developing a credible modelling 470 

process.  471 

The first knowledge gap identified by the project team required the BN model to provide a systems-472 

thinking approach that mapped the complex socio-ecological interactions within the Eden catchment. 473 

Creating and evaluating the conceptual BN model structure in stages 2 and 4 of the participatory process 474 

were important in ensuring the perspectives of stakeholders across sectors were considered when 475 

mapping the catchment system.  476 

Our findings presented in Figure 3 provide evidence that our BN model structure was ‘mostly 477 

representative’ of the Eden catchment system. We believe achieving a ‘very representative’ structure is 478 

limited by our inability to consider all human and non-human systems in the catchment. The model was 479 

strategic in including the critical wastewater, land management and water resource systems in the five 480 

waterbody sub-catchments. We applied a flexible approach to include the food production system, 481 

based on the input of additional stakeholders, however, there were limitations in time and resource to 482 

consider all catchment systems. Consulting the needs of the project team as end-users of the model 483 

helped reach agreement on the model structure and justify that the model structure was fit-for-purpose. 484 

Recording and analysing participant feedback during each workshop helped build a greater evidence 485 

base that the BN model was effective in mapping the complex socio-ecological catchment system. The 486 

example quote by LM6 above demonstrates the BN model helped participants consider how their sector 487 

impacted the system and the need to think beyond their own sector’s role within the catchment system. 488 

Using a BN model as an appropriate tool for mapping complex socio-ecological systems was also 489 

validated by the project team when evaluating the aim and objectives of the model at a final project 490 

meeting after testing model simulations in stage 5. Using the iterative five-stage process enabled the 491 

aim and objectives of the model to be evaluated by the project team, further ensuring the modelling 492 

approach was credible.  493 

To achieve legitimacy, participatory modelling should include a process of iteration that allows 494 

feedback from participants. The flexibility of BN models allows the model structure to be updated in 495 

real-time, which was effective during focus group sessions. Future regular updating of the model 496 
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structure and its assumptions should be considered to address the issue of unforeseen future shocks, an 497 

example being an abrupt geopolitical shock and its impacts on global food and fertiliser prices. 498 

Our findings support Voinov and Bousquet (2010), who considered BN models as a tool for 499 

understanding complex systems and facilitating knowledge sharing. Stakeholders could instruct the 500 

addition and removal of nodes and arrows, then describe their views on the catchment system. Having 501 

the ability to achieve co-design and accommodate new information in the model in a virtual setting with 502 

participants during the COVID-19 pandemic was a particular advantage of the BN model.  503 

4.2. Measuring catchment scale resilience  504 

In a review of BN applications in water resource management, Phan et al. (2019) identified the majority 505 

of applications solely focussed on water quality management. Few studies consider multiple concerns 506 

such as surface water quality, surface water flows, groundwater quality, air quality and soil quality 507 

within one model structure. Our findings presented in Fig.4 and Fig.5 demonstrate the ability to apply 508 

a participatory BN model that measures the impacts of both current and future conditions on multiple 509 

capitals and their associated resources. Presenting the multiple capital outputs addressed the knowledge 510 

needs of stakeholders in providing a holistic catchment scale approach.  511 

Our findings also support the conclusion of Moe et al., 2021 that BN models improve environmental 512 

risk assessment and their ability to explore future pathways. Phan et al. (2019) reviewed the inclusion 513 

of climatic and/or socioeconomic stressors in water-related BN model applications. Moe et al. (2019) 514 

is an example where both climatic and socioeconomic change is considered for the time-horizon 2050-515 

2070 using a discrete BN model. We build on the application of BN models that investigate the impacts 516 

of future climatic and socioeconomic change by utilising continuous nodes within the hybrid equation-517 

based BN model structure to measure both climatic and socioeconomic stressors, which is rare in the 518 

literature (Moe et al., 2021). Measuring the cumulative impacts across diverse coupled representative 519 

concentration and shared socioeconomic pathways to a 2050 time-horizon reduced the possibility of 520 

over or under-estimation of future impacts on water environments (Holman et al., 2016); addressing a 521 

further stakeholder knowledge need (Adams et al., 2022).    522 

Transferring the data and stakeholder knowledge into the hybrid-equation based structure was enabled 523 

by the ability of BN models to integrate multiple sources of data (Pham et al., 2021). The capacity of 524 

BN models to include continuous nodes is seen as a limitation (Uusitalo, 2007;Sperotto et al., 2017), 525 

however, we find the opposite to be true in our study. Despite limited monitoring data available in the 526 

Eden catchment, our BN model was able to simulate distributions to quantify nodes using summary 527 

statistics from other process-based model outputs. For example, only mean and standard deviation 528 

values were available for wastewater flow nodes, equation nodes enabled distributions to be created, 529 

providing 10,000 simulated outputs which could be discretised based on flow license information to 530 

represent risk. The variable log, (S3, Table S2) was used as a platform to record decisions made and 531 
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data collected during focus groups and workshops, increasing model salience. Ensuring stakeholders 532 

were involved in the process of data identification, built end-user trust and increased model credibility. 533 

Investigating the influence of cumulative future change impacts on specific areas of the catchment 534 

system assisted stakeholders to engage with the complexity of understanding socio-ecological systems 535 

and the impacts of diverse future pathways. Typical methods for identifying nodes that have the greatest 536 

influence on model outputs include causal probabilistic inference (Hobbs, 1997;Tang et al., 2016) and 537 

sensitivity analysis (Troldborg et al., 2022). Achieving typical methods requires discretisation of 538 

continuous nodes in the hybrid BN model network, which leads to imprecision (Borsuk, et al., 2012) 539 

and loss of information (Barton et al., 2008;Ames et al., 2005). Instead, we devised a manual sensitivity 540 

analysis for investigating specific model nodes that had the greatest influence on catchment resilience, 541 

without the need to trigger network discretisation. This approach involved dual representation of 542 

continuous nodes, presenting both posterior probability function outputs and creating a discretised child 543 

node. Manual backward investigation of the model created storylines from the capital outputs to specific 544 

sub-catchment nodes, an example being our presented results from Fig.4 to Fig.8. In our experience, 545 

we found the combination of both continuous and discrete model outputs to be more meaningful to 546 

stakeholders during project meetings and workshops. For decision-makers faced with the issues of 547 

system complexity and uncertainty, generating useful information that effectively communicates 548 

scientific outputs is a challenge (Liu et al., 2008;Callahan et al., 1999).  549 

Discretised outputs of continuous nodes provided stakeholders with a way of quantifying both the 550 

resilience of the catchment system and the uncertainty in the modelled outputs. Continuous outputs 551 

quantified the impacts of future change on sub-catchment-specific nodes. For example, the ability to 552 

quantify reactive phosphorus concentrations in micrograms per litre at each sub-catchment waterbody 553 

helped stakeholders conceptualise the extent to which water quality in the catchment will be impacted 554 

in the future under diverse pathways, as shown in Fig. 6.1 and Fig. 6.2. The ability to then discretise 555 

water quality nodes within each sub-catchment based on specific WFD ecological status threshold 556 

values provided users with an improved representation of both current and future uncertainty. 557 

Transparency in the selection of discretisation methods and discretisation boundary values is important 558 

as the discretisation of continuous nodes leads to loss of information. To achieve transparency, we 559 

applied both manual and unsupervised equal intervals where appropriate to discretise nodes in the BN 560 

model (S3, Table S3).  561 

Our findings enabled stakeholders to gain new perspectives on the extent of future change influence 562 

their specific sectors (Fig. 7) and how their sector impacted other sectors and environmental conditions 563 

within the catchment system (Fig. 8), promoting social learning as described by Basco-Carrera et al. 564 

(2017). Identifying specific aspects of the catchment system that are least resilient to the impacts of 565 

future change will allow decision-makers to target both the areas of the catchment where adaptive 566 
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management is required and the extent of action required in the face of potential future shocks and 567 

changes. Recognising the influence that all sectors have on water quality issues in the catchment 568 

highlighted the need for collaborative action. 569 

The BN model was considered an appropriate method for analysing the resilience of freshwater 570 

catchments by the project team at the final evaluation meeting. Our participatory process and methods 571 

can be replicated to create future BN models that incorporate diverse stakeholder knowledge to address 572 

end-user needs and support interdisciplinary resilience assessments.  573 

4.3. Limitations and outlook  574 

It’s important to highlight that the BN model was effective as a strategic tool to meet the needs of 575 

participating stakeholders to investigate the resilience of catchment systems. Compared to other 576 

modelling options - such as process-based modelling – BN models could be both a resource and cost-577 

effective option to conduct resilience assessments. Despite being effective as a strategic resilience tool, 578 

the BN model is limited in its ability to provide a detailed resilience assessment due to the lack of both 579 

temporal and spatial scales built into the model. Temporal and spatial scales could be applied to build 580 

on dynamic BN model applications such as (Molina et al., 2013) who assessed the impacts of climatic 581 

and land-use change on groundwater systems over 5-year time slices covering 30 years (2070-2100), or 582 

spatial BN model applications such as (Troldborg et al., 2022) who applied a spatial BN model to 583 

investigate field-level pesticide pollution risk at a small catchment scale. Applying these methods would 584 

allow for assessment of their effectiveness compared to process-based modelling to provide a detailed 585 

resilience assessment.   586 

Having multiple workshops created difficulties when trying to achieve consistent participant numbers 587 

across all workshops. Eliciting formal feedback at the end of each workshop for the catchment 588 

stakeholder participants was also challenging. For future improvement, we recommend testing the 589 

inclusivity of meetings or further focus groups and workshops, with wider catchment stakeholders, to 590 

give structured formal feedback sessions on the model structure and outputs.   591 

Using our findings, we will assess the ability of the BN model to inform the identification of adaptive 592 

management options and test their effectiveness in increasing the resilience of the Eden catchment in 593 

future research. With the same group of workshop participants, we will use the outputs presented in this 594 

study to test if they inform innovative and collaborative management options. The BN model structure 595 

will be updated to test the effectiveness of management scenarios in parallel with both the current and 596 

future simulations.  597 

5. Conclusion  598 

Using the Eden catchment case study, our research applied participatory methods to create a Bayesian 599 

Network (BN) model that addressed the needs of stakeholders to increase their understanding of 600 
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catchment-scale resilience to the cumulative impacts of future change. We identified four stakeholder 601 

knowledge needs that the BN model would aim to address: 1) ensure systems-thinking by mapping the 602 

socio-ecological interactions in the catchment; 2) measure the impacts of business as usual (BAU) 603 

change and shocks of extreme events and future pathways to a 2050 time-horizon; 3) use a holistic 604 

capitals approach to measure the overall future catchment health; and 4) identify specific aspects of the 605 

catchment system that are least resilient to the cumulative impacts of future change.  606 

Applying an iterative five-stage participatory process to construct the BN model achieved a systems-607 

based understanding of socio-ecological interactions within the catchment. The model provided an 608 

effective tool for understanding system complexity and enabling knowledge sharing between 609 

stakeholders. Our hybrid equation-based BN model facilitated investigation of diverse future pathway 610 

simulations, providing stakeholders with a strategic tool to measure the cumulative impacts of both 611 

climatic and socioeconomic changes to 2050.  612 

Our findings provided a holistic assessment of catchment scale resilience, demonstrating the possibility 613 

to apply a participatory BN model to consider the impacts of both current and future conditions on 614 

multiple capitals and their associated resources. The BN model structure enabled identification of 615 

specific areas of the catchment which were least resilient to future change pathways, enabling 616 

stakeholders to recognise the risks to their individual sectors, while also understanding their influence 617 

on the wider system and sectors.  618 

We found that a BN model is a credible, salient and legitimate strategic tool for addressing the 619 

stakeholder knowledge needs about catchment resource resilience. Improvements to the BN model 620 

could involve the addition of spatial and temporal scales to take the tool beyond a strategic resilience 621 

tool. Future research will test the ability of the BN model to inform the identification and test the 622 

effectiveness of adaptive management options identified by stakeholders.  623 
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